
Probing Challenges and Future Research of SBOM Generation for Medical Devices

Hui Zhuang∗§, Yan Long∗, Duyeong Kim†, Jennifer R. Amos‡, Heejo Lee†, Kevin Fu∗
∗ Northeastern University, Boston, USA

† Korea University, Seoul, Republic of Korea
‡ University of Illinois Urbana-Champaign, Urbana, USA

{zhuang.hu, y.long, k.fu}@northeastern.edu, {duyeong, heejo}@korea.ac.kr, jamos@illinois.edu

Abstract—Medical devices increasingly incorporate third-party
software components, which have prompted the U.S. Food
and Drug Administration (FDA) to require manufacturers
to submit a Software Bill of Materials (SBOM) during the
pre-market phase for cybersecurity management. This short
paper investigates to what degree existing SBOM generation
tools meet regulatory requirements. We perform a case study
on a widely used open-source SBOM tool (Anchore Syft) to
generate and analyze SBOMs for Tidepool Loop, an FDA-
approved software kit. Preliminary experimental results reveal
deficiencies in the generated SBOMs such as missing compo-
nent relationships, unknown version, and unspecified supplier
names, indicating potential problems in data completeness
and accuracy in broader landscapes of SBOM generation for
medical devices. We further discuss important future research
topics, including collaborative efforts among multiple stake-
holders, practitioner-oriented SBOM surveys, and benchmarks
for evaluating SBOM quality.

1. Introduction

Medical devices are increasingly integrating a variety of
third-party components [1]. While these third-party com-
ponents improve the functionality and development effi-
ciency of medical devices, they also increase the risk of cy-
bersecurity vulnerabilities, as demonstrated by well-known
vulnerabilities such as Log4j [2] and WannaCry [3]. To
address these risks, the U.S. Food and Drug Administration
(FDA) [4] requires medical device manufacturers to submit
a Software Bill of Materials (SBOM) during the pre-market
stage, enabling manufacturers and regulatory agencies to
verify whether components are exposed to CISA-listed KEV
vulnerabilities [5], and to promptly identify devices im-
pacted by newly discovered vulnerabilities, which is critical
given the severe consequences of cyberattacks on healthcare
systems [6]. Given that manual compilation of SBOMs is
often impractical due to the high complexity of medical
devices and the widespread integration of third-party com-
ponents, automated SBOM generation tools are widely used
to identify components and improve generation efficiency.

However, the dependency of SBOM’s accuracy on au-
tomated generation tools prompts us to think about an
§Corresponding author: zhuang.hu@northeastern.edu

important emerging problem: To what extent could existing
SBOM generation tools meet regulatory expectations
in the medical device domain? As FDA stipulates that
medical device manufacturers should submit SBOMs that
adhere to the minimum elements (Table A.1) defined by the
National Telecommunications and Information Administra-
tion (NTIA) [7], the first step to evaluate whether existing
SBOM generation tools meet FDA expectations involves
assessing whether the generated SBOMs comprehensively
and accurately capture these critical elements.

Although a variety of SBOM generation tools have
already been deployed in the medical device industry [8]–
[11], their commercial nature makes it difficult to assess
their detailed technical capability and implementation issues,
preventing researchers from conducting systematic analysis
to examine potential flaws. As the first step of probing
the challenges in SBOM generation for medical devices,
this work conducted a preliminary test using open-source
generation tools and medical device software to evaluate the
potential problems of existing SBOM generation schemes
in the medical device domain. Specifically, we used the
Anchore Syft [12] to generate an SBOM for the open-source
medical device application Tidepool Loop [13], which is the
first FDA-approved diabetes-related app [14], and compared
the generated SBOM with current regulatory requirements.
The results revealed that the SBOM generated by Syft ex-
hibited several missing key elements, including (1) missing
relationships, (2) unknown component versions, and (3)
unspecified supplier names.

Our analysis shows that these problems are caused by
limitations in tool implementation, variability in dependency
specification strategies, and the lack of standardized meta-
data support in programming language ecosystems. Many
of the observed challenges stem from broader technical
limitations not exclusive to Syft or open-source tools. There-
fore, we argue that commercial SBOM generation tools are
likely to also encounter similar challenges in SBOM data
compliance. In addition, we found that existing SBOM eval-
uation tools do not fully capture the issues identified in our
analysis when assessing the quality of generated SBOMs.
We further discuss the plan of conducting a survey with
SBOM professionals working in the medical device security
industry. Aiming to characterize the potential gaps between
open-source and commercial SBOM generation software.



Furthermore, we discuss the development benchmarks that
could enable consistent evaluation across tools and support
measurable improvement in both data completeness and ac-
curacy. We show how coordinated efforts among regulatory
agencies, medical device manufacturers, SBOM tool devel-
opers, and upstream software providers are urgently needed
to jointly improve the quality and regulatory compliance of
SBOMs.

2. FDA’s SBOM Requirement

Since 2023, the U.S. FDA requires manufacturers to
submit a SBOM during the pre-market phase to address the
growing cybersecurity threats to medical devices [4].

Although the FDA requires SBOM submission, it has
not established a formal specification for the structure or
required fields. Instead, the FDA advises manufacturers to
adopt the SBOM standard proposed by NTIA [7], which
specifies that an SBOM must include, at a minimum, the
seven data elements listed in Table A.1, with detailed
descriptions provided in the Description column. These
elements help both device manufacturers and healthcare
providers track vulnerabilities and fix problems quickly
when they arise. We emphasize that this table reflects only
the minimal requirements, SBOMs are typically more de-
tailed like Figure A.1 in practice.

To meet this requirement, manufacturers in the medical
device industry typically rely on automated tools to generate
SBOMs, as manually documenting a large number of third-
party components is impractical. While such tools have
been widely adopted in other areas of software engineering,
recent studies suggest that their accuracy remains limited.
For instance, Rabbi et al. [15] found that tools such as
Syft achieve only around 80% accuracy in extracting critical
metadata and most tools fail to automatically detect inter-
component dependencies, resulting in SBOMs with miss-
ing or erroneous fields. Although their work focused on
JavaScript npm projects rather than medical device software,
the third-party components used in medical devices are
largely similar to those in other applications and systems,
we speculate that these known issues may also affect SBOM
generation in the medical device domain, limiting the ability
of regulatory compliance.

3. Preliminary Experiment & Observations

3.1. Problems of SBOM Generation Tools

To investigate whether existing SBOM generation tools
also encounter extraction accuracy issues in the medical
device domain, we employed the open-source tool Syft [12]
to generate an SBOM for the Tidepool Loop application
[13]. Tidepool Loop is an insulin delivery app that runs
on the iPhone and is the first FDA-approved application
for diabetes management [14]. SBOMs can be generated
through various approaches, such as binary-based [16]–[20],
filesystem-based [12], [21], [22], and source-based [23]–
[25] analysis. We used Syft to generate SBOMs through

its default filesystem-based analysis, which is more general
and does not require source code or build manifests, an
example of which is shown in Figure A.1. Our analysis of
the generation SBOMs identified three major issues:

Missing Component Relationship: Component rela-
tionship information is essential for revealing vulnerability
propagation paths and for guiding precise remediation. The
completeness of component relationship information in the
SBOM was observed to depend on the selected output
format. When using the SPDX format, Syft can automat-
ically include inter-component relationships. However, the
resulting SBOM lacks any relationship data when the output
is set to CycloneDX. By examining discussions in Syft’s
GitHub issues and comparing SBOMs generated by another
tool cdxgen [26], we found that Syft omits component
relationships in CycloneDX SBOMs due to limitations in
its processing logic for this format. This was confirmed
by generating a CycloneDX SBOM for Tidepool Loop
using cdxgen, which included complete inter-component
relationship information, showing that the issue stems from
Syft itself rather than from the CycloneDX format. This
finding demonstrates that the quality of an SBOM largely
depends on the tool selected, highlighting the need for a
standardized evaluation benchmark in the medical device
domain to systematically assess the performance of different
SBOM tools.

Unknown Version: Accurate version information is
critical for linking SBOM components to vulnerability
databases. The SBOM generated by Syft for the Loop
application reveals that approximately 14% of its compo-
nents (15 out of 107) lack version information. This issue
primarily stems from how developers specify dependencies.
For example, in this Swift-based application, dependencies
are listed in the Package.resolved file. We observed that
the “state” field in different packages varies: some include
a version field, which Syft [12] can successfully extract;
others only include a branch or revision, which results in
the version being marked as “unknown” in the SBOM. This
discrepancy originates from the dependency specification
strategy adopted by developers. When a fixed version is
declared, the Package.resolved file contains a corresponding
version field. In contrast, if a dependency is defined using
a branch (e.g., “main”) or a specific commit, only the
branch or revision is recorded, and no standardized version
field is provided. As a result, Syft is unable to extract
explicit version information from such entries. To mitigate
this issue, in addition to encouraging developers to specify
concrete version numbers in dependency declarations, it is
also crucial to enhance SBOM tools to extract branch or
commit information when explicit versions are unavailable
for improving the completeness and traceability of SBOM
outputs.

Unspecified Supplier Name: Supplier information is
important for regulatory accountability and identification of
the organization responsible for addressing vulnerabilities.
However, we found that almost all components have the
problem of missing supplier names in the generated SBOMs.
The absence of supplier name fields is attributable to two



main reasons: first, most programming language ecosystems
do not enforce supplier declaration; second, Syft lacks robust
support for extracting supplier names from the package
URL (purl). We compared SBOMs generated by Syft in
both CycloneDX and SPDX formats and found that the
CycloneDX format entirely omits the supplier name field.
Although the SPDX format does include this field, whether
it is successfully populated with meaningful supplier infor-
mation depends on the component type, which can typically
be inferred from the prefix following “pkg:” in the purl.
For example, when the component type is github, Syft
is able to correctly extract the supplier name. However,
for components of type swift and gem, the supplier field
consistently remains empty. This issue is partially due to
the fact that neither the Swift nor RubyGems ecosystems
require developers to explicitly specify supplier information.
More importantly, we observed that the purl of Swift compo-
nents actually includes supplier information in the segment
immediately preceding the component name. Nevertheless,
Syft still fails to parse it correctly, indicating that its current
handling of purl structure remains incomplete and requires
further improvement. This result indicates that the quality
of SBOM generation is influenced not only by the parsing
capabilities of tools but also by the metadata specification
of programming language ecosystems. For SBOM tool de-
velopers, it is important to enhance support for parsing var-
ious purl formats. In addition, we encourage programming
language maintainers to promote more structured metadata
specifications.

3.2. Problems of SBOM Evaluation Tools

Beyond evaluating SBOM generation tools, we also
investigated the performance of representative SBOM eval-
uation tools to test their effectiveness in assessing SBOM
quality. Existing SBOM evaluation solutions include tools
such as sbomqs [27] and CycloneDX CLI [28]. We take
sbomqs as an example. The experiments focus on the
“NTIA-minimum-elements” metric in sbomqs, which evalu-
ates whether an SBOM satisfies the minimum data element
requirements defined by the NTIA. Based on this met-
ric, we evaluate CycloneDX and SPDX SBOMs generated
by Syft for the Tidepool Loop application, with results
shown in Table A.2. The scores on some features such
as sbom dependencies, comp with supplier were generally
consistent with our earlier observations.

However, we further identified limitations in sbomqs’s
evaluation logic. For instance, while the comp with version
field is mostly marked as correct, our manual analysis
reveals that sbomqs assigns a score to this field as long
as the version field value exists, even if it is unknown.
This shows that sbomqs evaluates certain features mainly by
checking whether field values exist, but it does not assess
their accuracy. Moreover, we observed that even for the
same application, sbomqs calculates the number of evaluated
components differently depending on the SBOM format: in
CycloneDX format, it scores both components and files,
whereas in SPDX format, it only scores components. The

discrepancy arises from differences in structural modeling:
CycloneDX consolidates third-party components and files
under the component structure, while SPDX treats them as
parallel constructs. However, sbomqs does not granularly
account for this distinction and instead performs coarse-
grained extraction of the entire structure containing third-
party components, leading to inconsistencies in the reported
component count across SBOM formats. It is possible to
imagine that if a regulatory agency uses tools similar to
sbomqs to evaluate the quality of submitted SBOMs, the
conclusion will inevitably be biased. As a result, we argue
that improving overall cybersecurity practices using SBOMs
requires improving both SBOM generation and evaluation
capabilities.

4. Future Research Directions

4.1. SBOM Quality Improvement

Improving SBOM quality requires collaboration across
multiple stakeholders including regulatory agencies, medical
device manufacturers, SBOM tool developers, and upstream
software providers, as the challenges stem not only from
technical limitations of current tools but also from organi-
zational and process-related factors. While the intent of the
regulation is to enhance transparency and mitigate risks from
software vulnerabilities, the regulation also introduces new
complexities for manufacturers. However, there remains a
significant lack of empirical evidence detailing the specific
challenges that medical device manufacturers face in com-
plying with this requirement, making it difficult to tailor sup-
port or policy interventions effectively. Moreover, SBOMs
are often developed by cybersecurity professionals who may
not fully understand the workflows of medical device man-
ufacturers or the realities of clinical use environments, lead-
ing to potential misalignments in implementation. Despite
these hurdles, the regulation also presents an opportunity:
by fostering cross-disciplinary collaboration, investing in
workforce training, and aligning SBOM practices with real-
world manufacturing and clinical contexts, stakeholders can
not only meet regulatory expectations but also advance the
safety and resilience of medical technologies. To realize this
potential, each stakeholder group must take coordinated and
well-defined actions.

Regulatory agencies should develop SBOM generation
standards and formats specifically for medical devices, urg-
ing manufacturers to adhere to them during both the devel-
opment and maintenance phases. It would also be beneficial
if they could establish unified benchmarks for SBOM eval-
uation, providing clear directions for tool developers and
reliable criteria for manufacturers in selecting tools.

Medical device manufacturers should recognize the criti-
cal role of SBOMs across the entire product lifecycle. When
incorporating third-party components, they are encouraged
to prioritize components that meet SBOM compliance re-
quirements. When deficiencies are identified, manufacturers
should bear the ultimate responsibility for correcting and



maintaining SBOM accuracy. Additionally, manufacturers
should be capable of identifying practical challenges en-
countered during SBOM deployment in the medical device
domain, such as data update complexity, regulatory audit
procedures, and compatibility within clinical environments,
in order to provide valuable feedback for compliance im-
provements and cross-sector coordination.

SBOM tool developers should enhance data field pars-
ing logic and improve the tool’s capacity to automatically
complete component metadata. By integrating metadata and
external databases, tools can perform intelligent inference
to compensate for missing fields caused by nonstandard
upstream data. In addition, to address the diversity of SBOM
formats, developers should design differentiated parsing
strategies for different formats to ensure that SBOMs gen-
erated in various formats meet regulatory requirements for
both compliance and accuracy. Moreover, developers are en-
couraged to actively engage with practitioners in the medical
device industry to better understand domain-specific SBOM
needs and usage contexts.

Finally, we believe that upstream software providers can
contribute by promoting the inclusion of essential meta-
data such as version numbers and supplier identities in
development specifications to meet the NTIA’s minimum
elements requirements. This approach will not only improve
the accuracy of data extraction by SBOM tools but also
strengthen the overall quality and traceability of SBOMs.

4.2. Practitioner Survey

We believe a survey and interview study is necessary
for further addressing the gap between speculated prob-
lems and real-world usage patterns. In Section 3.1, we
highlighted several issues observed in existing open-source
SBOM generation tools. However, it remains unclear which
specific commercial or open-source tools are actually used
by medical device manufacturers, and whether these tools
exhibit similar or new types of issues. Therefore, empirical
studies are essential to bridge the gap between hypothesized
concerns and practical usage in real-world settings.

The interviews and surveys will target industry profes-
sionals working in the medical device domain and em-
phasize practical challenges of SBOM generation in the
wild, with a focus on investigating answers to the following
research questions:

• What are the unique challenges of SBOM generation
for medical and healthcare devices, compared to
other application domains?

• How effectively do existing SBOM generation tools
support the unique needs of medical devices?

• How do manufacturers keep SBOMs up to date with
software changes?

• How to verify that a generated SBOM accurately
represents all third-party components in a medical
device?

• What kind of knowledge or guidance do medical
device manufacturers want to receive from the FDA?

• How can the community collaborate to develop
SBOM standards better suited for medical devices?

4.3. Medical Device SBOM Benchmark

Establishing a benchmark for SBOM generation tools is
another necessary step toward standardized evaluation and
cross-tool comparison. We envision creating a representative
dataset of medical device samples, generating SBOMs using
various tools, and systematically evaluating them based on
a common set of metrics.

The primary challenge in building such a benchmark
lies in obtaining reliable ground truth. As discussed in
Section 3.2, existing SBOM evaluation tools have limi-
tations in verifying data accuracy. Therefore, high-quality
ground truth is urgently needed to assess the output of
various SBOM tools. However, commercial medical devices
typically contain numerous third-party components, making
manual construction of complete and trustworthy ground
truth infeasible.

In future research, efforts can be directed toward two key
areas. First, collaboration between regulatory agencies and
medical device manufacturers could facilitate the creation
of standardized datasets containing approved products and
their associated SBOMs. These datasets can serve as trusted
references for advancing evaluation technologies tailored to
SBOM generation in the medical device domain. Second,
the integration of large language models (LLMs) into SBOM
evaluation processes presents a promising direction. For
instance, LLMs are potentially capable of automatically
identifying and extracting SBOM elements and verifying
the accuracy of field values through component information
retrieval, thereby enhancing the effectiveness of automated
SBOM assessments.

5. Conclusion
This paper focuses on SBOM generation in the medical

device domain and analyzes the limitations of the open-
source SBOM generation tool in producing SBOMs for
medical devices. Based on preliminary experimental results,
the study identifies two key directions for future research in
this area: engaging with stakeholders to better understand
their use of commercial SBOM generation tools and devel-
oping a unified evaluation benchmark to enable assessment
and comparison of different SBOM tools.

Acknowledgment
We are grateful to all anonymous reviewers for their

valuable feedback that helped improve this paper, and we
thank Christopher Pellegrini for his constructive advice.
This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.RS-
2024-00440780, Development of Automated SBOM and
VEX Verification Technologies for Securing Software Sup-
ply Chains, No.RS-2022-II220277, Development of SBOM
Technologies for Securing Software Supply Chains).



References

[1] S. Carmody, A. Coravos, G. Fahs, A. Hatch, J. Medina, B. Woods,
and J. Corman, “Building resilient medical technology supply chains
with a software bill of materials,” npj Digital Medicine, vol. 4, no. 1,
pp. 1–6, 2021.

[2] UK National Cyber Security Centre. (2021) Log4j vulnerability
– what everyone needs to know. Accessed: 2025-07-22. [Online].
Available: https://www.ncsc.gov.uk/information/log4j-vulnerability-
what-everyone-needs-to-know

[3] Wikipedia contributors, “Wannacry ransomware attack,” https://en.
wikipedia.org/wiki/WannaCry ransomware attack, 2024, accessed:
2025-07-22.

[4] U.S. Food and Drug Administration, “Cybersecurity in medical
devices: Quality system considerations and content of premarket
submissions,” https://www.fda.gov/regulatory-information/search-
fda-guidance-documents/cybersecurity-medical-devices-quality-
system-considerations-and-content-premarket-submissions, Jun.
2025, guidance for Industry and Food and Drug
Administration Staff, Docket No. FDA-2021-D-1158. [Online].
Available: https://www.fda.gov/regulatory-information/search-fda-
guidance-documents/cybersecurity-medical-devices-quality-system-
considerations-and-content-premarket-submissions

[5] Cybersecurity and Infrastructure Security Agency. (2024)
Known exploited vulnerabilities catalog. Accessed: July 23,
2025. [Online]. Available: https://www.cisa.gov/known-exploited-
vulnerabilities-catalog

[6] N. Sullivan and K. Raphel, “Clinical and hospital system emergency
management implications of cyberthreats,” in Proceedings of the
2024 Workshop on Cybersecurity in Healthcare, ser. HealthSec ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
11–16. [Online]. Available: https://doi.org/10.1145/3689942.3694742

[7] NTIA Multistakeholder Process on Software Component Trans-
parency Framing Working Group, “Framing software component
transparency: Establishing a common software bill of materi-
als (sbom), second edition,” https://www.ntia.gov/sites/default/files/
publications/ntia sbom framing 2nd edition 20211021 0.pdf, Oct.
2021, accessed 2025-07-09.

[8] Blue Goat Cyber, “Fda-compliant sbom generation & maintenance for
medical devices,” https://bluegoatcyber.com/services/sbom-software-
bill-of-materials-services/, 2025, accessed July 2025.

[9] FOSSA, “Sbom generation and management for medical de-
vices,” https://fossa.com/industries/medical-device/, 2025, accessed
July 2025.

[10] Ketryx, “Medical device sbom management software,” https://
www.ketryx.com/capabilities/sbom-software-bill-of-materials, 2025,
accessed July 2025.

[11] Labrador Labs, “Secure software supply chain management,” https:
//labradorlabs.ai, 2025, accessed: July 23, 2025.

[12] I. Anchore, “Syft: Cli tool and library for generating a software bill
of materials from container images and filesystems,” https://github.
com/anchore/syft, 2020, version 1.x.

[13] Tidepool. (2025) Tidepool loop receives fda clearance. Accessed:
2025-07-13. [Online]. Available: https://www.tidepool.org/tidepool-
loop

[14] H. Look, “Tidepool loop has received fda clearance!” https://tidepool.
org/blog/tidepool-loop-has-received-fda-clearance, January 2023, ac-
cessed July 2025.

[15] M. F. Rabbi, A. I. Champa, C. Nachuma, and M. F. Zibran, “Sbom
generation tools under microscope: A focus on the npm ecosystem,”
in Proceedings of the 39th ACM/SIGAPP Symposium on Applied
Computing, ser. SAC ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 1233–1241. [Online]. Available:
https://doi.org/10.1145/3605098.3635927

[16] W. Tang, P. Luo, J. Fu, and D. Zhang, “Libdx: A cross-platform and
accurate system to detect third-party libraries in binary code,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2020, pp. 104–115.

[17] C. Yang, Z. Xu, H. Chen, Y. Liu, X. Gong, and B. Liu, “Modx:
binary level partially imported third-party library detection via
program modularization and semantic matching,” in Proceedings
of the 44th International Conference on Software Engineering,
ser. ICSE ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 1393–1405. [Online]. Available: https://doi.org/
10.1145/3510003.3510627

[18] S. Li, Y. Wang, C. Dong, S. Yang, H. Li, H. Sun, Z. Lang, Z. Chen,
W. Wang, H. Zhu, and L. Sun, “Libam: An area matching framework
for detecting third-party libraries in binaries,” ACM Trans. Softw.
Eng. Methodol., vol. 33, no. 2, Dec. 2023. [Online]. Available:
https://doi.org/10.1145/3625294

[19] L. Jiang, J. An, H. Huang, Q. Tang, S. Nie, S. Wu, and
Y. Zhang, “ BinaryAI: Binary Software Composition Analysis via
Intelligent Binary Source Code Matching ,” in 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE).
Los Alamitos, CA, USA: IEEE Computer Society, Apr. 2024, pp.
2771–2783. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1145/3597503.3639100

[20] Z. Yuan, M. Feng, F. Li, G. Ban, Y. Xiao, S. Wang, Q. Tang, H. Su,
C. Yu, J. Xu, A. Piao, J. Xuey, and W. Huo, “B2sfinder: Detecting
open-source software reuse in cots software,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 1038–1049.

[21] A. Security, “Trivy: Vulnerability and misconfiguration scanner,”
https://github.com/aquasecurity/trivy, 2024, accessed: July 24, 2025.

[22] I. VMware, “Tern: A software composition analysis tool for contain-
ers,” https://github.com/tern-tools/tern, 2024, accessed: July 24, 2025.

[23] S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “Centris: A precise
and scalable approach for identifying modified open-source software
reuse,” in 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), 2021, pp. 860–872.

[24] J. Wu, Z. Xu, W. Tang, L. Zhang, Y. Wu, C. Liu, K. Sun, L. Zhao,
and Y. Liu, “Ossfp: Precise and scalable c/c++ third-party library
detection using fingerprinting functions,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, pp.
270–282.

[25] Y. Na, S. Woo, J. Lee, and H. Lee, “Cneps: A precise approach
for examining dependencies among third-party c/c++ open-source
components,” in 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), 2024, pp. 2918–2929.

[26] S. Springett and C. C. Team, “cdxgen: A universal SBOM genera-
tor for multiple ecosystems,” https://github.com/CycloneDX/cdxgen,
CycloneDX Project, 2023, version 9.x or later. Accessed July 14,
2025.

[27] Interlynk-io, “sbomqs: Quality metrics for sboms,” https://github.com/
interlynk-io/sbomqs, 2025, accessed: 2025-07-21.

[28] O. Foundation, “Cyclonedx cli: Sbom analysis and conversion tool,”
https://github.com/CycloneDX/cyclonedx-cli, 2025, accessed: 2025-
07-21.

Appendix

1. NTIA-Specified Minimum Elements for SBOM

Table A.1 outlines the NTIA-specified minimum ele-
ments for an SBOM and provides a description of each
element.

https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cybersecurity-medical-devices-quality-system-considerations-and-content-premarket-submissions
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://doi.org/10.1145/3689942.3694742
https://www.ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf
https://www.ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf
https://bluegoatcyber.com/services/sbom-software-bill-of-materials-services/
https://bluegoatcyber.com/services/sbom-software-bill-of-materials-services/
https://fossa.com/industries/medical-device/
https://www.ketryx.com/capabilities/sbom-software-bill-of-materials
https://www.ketryx.com/capabilities/sbom-software-bill-of-materials
https://labradorlabs.ai
https://labradorlabs.ai
https://github.com/anchore/syft
https://github.com/anchore/syft
https://www.tidepool.org/tidepool-loop
https://www.tidepool.org/tidepool-loop
https://tidepool.org/blog/tidepool-loop-has-received-fda-clearance
https://tidepool.org/blog/tidepool-loop-has-received-fda-clearance
https://doi.org/10.1145/3605098.3635927
https://doi.org/10.1145/3510003.3510627
https://doi.org/10.1145/3510003.3510627
https://doi.org/10.1145/3625294
https://doi.ieeecomputersociety.org/10.1145/3597503.3639100
https://doi.ieeecomputersociety.org/10.1145/3597503.3639100
https://github.com/aquasecurity/trivy
https://github.com/tern-tools/tern
https://github.com/CycloneDX/cdxgen
https://github.com/interlynk-io/sbomqs
https://github.com/interlynk-io/sbomqs
https://github.com/CycloneDX/cyclonedx-cli


Attributes Description

Author Name Author of the SBOM
Timestamp Date and time when the SBOM was last updated
Supplier Name Name or other identifier of a component supplier
Component Name Name or other identifier of a component
Version String Version of a component
Unique Identifier Information to uniquely define a component
Relationship Association between SBOM components

TABLE A.1: NTIA-Specified Minimum Elements for
SBOM [7]

2. Example SBOM Output

Figure A.1 shows SBOM component information for the
Tidepool Loop application generated using the Syft tool in
both CycloneDX and SPDX formats.

(a) CycloneDX format

(b) SPDX format

Figure A.1: SBOM component information of Tidepool
Loop application generated by Syft tool.

3. Sbomqs Evaluation Results

Table A.2 reports the evaluation results of sbomqs on
CycloneDX and SPDX SBOMs.

Feature CycloneDX
Score

CycloneDX Desc SPDX
Score SPDX Desc

comp with name 10.0/10.0 114/114 have names 10.0/10.0 107/107 have names
comp with supplier 0.0/10.0 0/114 have supplier names 0.1/10.0 1/107 have supplier names
comp with uniq ids 10.0/10.0 All components have

unique ID’s
10.0/10.0 All components have

unique ID’s
comp with version 9.3/10.0 106/114 have versions 9.9/10.0 106/107 have versions
sbom authors 10.0/10.0 doc has 1 author 10.0/10.0 doc has 2 authors
sbom creation timestamp 10.0/10.0 doc has creation timestamp 10.0/10.0 doc has creation timestamp
sbom dependencies 0.0/10.0 0 dependencies listed 10.0/10.0 106 dependencies listed

TABLE A.2: Sbomqs Evaluation Results for CycloneDX
and SPDX SBOMs


	Introduction
	FDA's SBOM Requirement
	Preliminary Experiment & Observations
	Problems of SBOM Generation Tools
	Problems of SBOM Evaluation Tools

	Future Research Directions
	SBOM Quality Improvement
	Practitioner Survey
	Medical Device SBOM Benchmark

	Conclusion
	References
	Appendix
	NTIA-Specified Minimum Elements for SBOM
	Example SBOM Output
	Sbomqs Evaluation Results


