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Abstract—This work explores how to physically watermark
images generated by CMOS cameras using deliberately injected
radio-frequency signals. CMOS camera imaging is ubiquitous
in embedded systems such as smartphones, AR/VR headsets,
drones, and other IoT platforms to capture photos and videos. In
restricted environments, a property owner may wish to prevent
unauthorized camera recordings depending on spatio-temporal
context. Indelible watermarks can deter unauthorized recording.
A key research challenge is how to find a reasonably general
mechanism to surreptitiously inject watermarks without access
to the camera. Existing methods typically rely on software-based
watermarking or metadata generation, assuming cooperation
from camera owners. However, adversaries can trivially disable
metadata or watermarking functions to evade forensic analysis.
To address this gap, our work explores an unconventional
approach of watermarking non-cooperative cameras by injecting
radio-frequency interference in the environment to affect the
analog sensing process and inject defender-controlled patterns
in the image output. Our analysis explains how the rolling
shutter and Bayer filter hardware convert radio-frequency signals
into color stripes with variable widths. Building upon model-
based simulation, our prototype design encodes and extracts
imperceptible watermarks with a bandwidth of up to 50 bits per
image. Proof-of-concept evaluations in lab environments show
that the proposed technique could support watermarking images
with diverse background scenes and reveal future challenges of
improving watermark bandwidth and injection distance.

I. INTRODUCTION

Our research probes the feasibility of externally inject-
ing watermarking information into images taken by CMOS
cameras sensors by generating intentional radio-frequency
(RF) interference in the physical environment. Digital images
produced by camera sensors have become one of the most
common types of high-entropy data for sharing information.
It is estimated more than 1.5 trillion images will be generated
per year after 2022 by existing smartphones, IoT devices, etc.,
as well as emerging AR/VR headsets [1]]. Given that many of
the images generated by cameras could be taken in unautho-
rized locations or times, the ability to add geolocation and
timestamp information to images is key to supporting image
forensics and preventing malicious creation, manipulation, and
distribution of camera images [2f], [3].

While various image watermarking and metadata genera-
tion techniques exist, they rely on the key assumption that
the camera software and hardware generating the photo are
cooperative with the defender party who wants to embed
watermarking information [4]]-[7]. However, this assumption
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Fig. 1: To deter and trace malicious camera photography
in prohibited locations and times, RE-Eye-D uses external
RF signals to inject imperceptible stripe-like watermarks into
CMOS camera images.

does not apply to many cases of unauthorized photography in
the age of ubiquitous camera sensors in IoT and smart devices.
For example, when a malicious party walks into a room and
takes a photo using a smartphone secretly, they could have
full control over their camera software and thus disable all
metadata and watermarking functions on the camera device.
This problem thus calls for a method to externally watermark
an image with defender-created information, even when the
defender does not have control over the adversary’s camera
devices.

To bridge this gap, our work carries out the first investi-
gation of how to watermark photos taken by non-cooperative
CMOS cameras using RF injections. Our physical watermark-
ing method builds upon our key observations that intentional
RF interference in the ambient environments of camera hard-
ware can induce voltage perturbations to the underlying analog
signal readout circuits of CMOS camera sensors, thus cre-
ating defender-controlled information channels in the output
images, as illustrated in Fig. [} Furthermore, our analysis
shows that this watermark injection process is bounded by
the row-wise parallel readout architecture and the Bayer color
filter hardware, creating stripe watermarking patterns whose
width, number, and color can be predicted. Our extensive
experimental analysis allows us to build a theoretical model
for describing the injected patterns in the images.

However, turning these induced stripe patterns into useful
watermarking primitives faces unique challenges. First, the
injected RF signals cannot be synchronized with the internal
timing of the CMOS sensing circuits because the adversary-
controlled camera hardware is assumed not to be cooperative.
As a result, the injected patterns could appear at arbitrary loca-
tions in the output images, and thus demand a synchronization-
free watermark encoding/decoding scheme. Second, the actual



photos taken by cameras in real-world environments could
have complex scene information, which is essentially noise
to the defender who wants to recognize watermarks em-
bedded in the images. While prior research has shown the
feasibility of extracting similar stripe patterns induced by
magnetic signals from dark images taken by blocked camera
sensors [8]], the requirement of simple dark-current images
makes such techniques infeasible for watermarking purposes.
The unique requirement of making watermarks imperceptible
to human perception further adds to the challenge because
imperceptibility means even lower signal-to-noise ratios that
the watermark recognition system needs to operate on.

This research explores the solutions to these challenges
through the design of RF-Eye-D, a model-based system
for encoding and extraction of RF-induced watermarks in
CMOS camera images. The system consists of a watermark
enhancement and extraction frontend that utilizes color space
transformations informed by the sensor’s de-bayering process
to amplify the difference between the watermark and the
background scenes, and then employs a U-Net network well-
suited for image segmentation tasks to separate the clean
stripes from the background scenes. A watermark decoding
backend uses bit region segmentation and bit value determina-
tion algorithms to convert cleaned stripes back to digital bits
and then recursively searches for watermarks by comparing
the Hamming distances of decoded bits to known preambles.
Notably, the neural network-powered system could be trained
exclusively on simulated image data generated by our RF
watermarking model that describes how different frequencies
of RF energy are transformed into imperceptible watermarks
overlaid on ordinary images. Our proof-of-concept evalua-
tions provide demonstrations of the RF-based watermarking
technique’s potential in various conditions in controlled lab
environments. Tested factors include the textural complexity of
camera scenes, lighting conditions, camera angles, the number
of bits injected per image that can convey different typical
types of geotagging and timestamping information, and the
model of camera sensor hardware. Based on the observed lim-
its, we further discuss possible future improvements that may
take the proof-of-concept design to real-world deployment. In
summary, the main contributions of this work include:

o The experimental methodology and theoretical models
for using RF signals to physically inject watermarks into
CMOS camera images. They lay the foundation of a novel
paradigm of image watermarking that do not require work
with non-cooperative camera devices.

o The pilot system design of RF watermark encoding, injec-
tion, and extraction. The system consists of hardware and
software designs that can be reused in diverse physical
camera watermarking scenarios.

o Proof-of-concept evaluations in lab environments that
characterize the critical factors affecting the watermark-
ing capabilities. The evaluations reveal key research ques-
tions that are worth further investigation.
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Fig. 2: The CMOS camera sensor hardware structure consist-
ing of the Bayer color filter and the rolling shutter row-wise
scanning control and measurement units. RF energy injected
during the analog signal readout of pixel rows could induce
colored, imperceptible stripe patterns for image watermarking.

II. BACKGROUND

This section provides background information on CMOS
camera sensing and RF and other electromagnetic interfer-
ence’s known impacts on sensor hardware to explain the
motivation and preliminaries of RF-Eye-D.

A. CMOS Camera Sensor Hardware

Camera sensors are mainly categorized into Complementary
Metal-Oxide-Semiconductor (CMOS) and Charge-Coupled
Device (CCD) types. CCD sensors use a global shutter that
transfers charges from all pixels to a centralized readout unit,
but suffer from slower speeds and higher costs. CMOS sensors
use a rolling shutter for row-wise exposure and readout,
offering greater efficiency and lower cost, which makes them
dominant in smartphones and other consumer-grade imaging
systems [9]-[11]. A typical CMOS camera comprises a photo-
diode array and downstream scanning and measurement cir-
cuits.

Photodiode Array and Bayer Filter: Photodiodes are used
to transduce incoming photons, converting them into electrical
charge signals. The stronger the incoming light, the more
signal charges are generated, resulting in a higher pixel value.
Each photodiode captures the intensity of only one color
channel (one of RGB), and the arrangement of these color
channels follows the Bayer pattern [12]], as shown in Fig. |2}
After signal charges have accumulated for a certain period of
time, i.e., the exposure time, the electrical signals are read out
by the scanning unit.

Rolling Shutter Scanning: The scanning unit consists of
row control logic and multiple shift registers. The control
logic sequentially selects pixel rows in a predefined order,
thereby enabling the row-by-row exposure process of the
rolling shutter mechanism, as shown in Fig. 2] The analog
voltage of each pixel in the activated row is then transmitted
through the column bus to the corresponding measurement
unit, where it is simultaneously sampled and digitized by
column-parallel measurement units.

Measurement Unit: A measurement unit consists of an
amplifier and an analog-to-digital converter (ADC). CMOS



camera sensors typically employ a column-parallel ADC archi-
tecture, in which each column has its own ADC. During image
readout, the analog signals on all columns of the selected row
are simultaneously transferred to the corresponding column
ADC and then sampled. Since all column ADCs operate syn-
chronously within the same row, injecting RF energy coupled
into the analog circuitry and sampled by the ADCs during the
sampling phase could only cause row-wise variation artifacts
in the captured image, as will be shown in Section [II]

Signal Sampling and Aliasing. When ADCs sample con-
tinuous signals with insufficient sampling rates, aliasing dis-
tortions could happen in the output digital sequences. A digital
signal with a sampling rate of f; has a bandwidth f,/2,
meaning that the continuous signals with frequencies lower
than fs/2 can be converted into digital signals without loss
of information. Otherwise, aliasing could convert a signal
into other unseen frequencies [13]], causing the observed low-
frequency stripes induced in images by high-frequency RF
signals in Section [[II

B. Image Processing Output under Interference

Since each pixel in the photodiode array captures only one
color channel, the initial output is a raw Bayer-format image
[14] that requires demosaicing to reconstruct a full RGB im-
age. Demosaicing algorithms utilize the spatial arrangement of
the Bayer matrix and apply appropriate interpolation methods,
such as nearest-neighbor interpolation, to estimate the missing
values of the other two color channels for each pixel based on
the values of neighboring pixels.

The row-wise readout architecture of camera sensors stim-
ulates the assumption that any external RF signals could only
cause row-wise variations in the images because the injected
RF energy could only cause all pixel values within the affected
row to increase or decrease consistently, depending on the
strength and polarity of the coupled signal. Given that each
row of the Bayer color filter array contains only two types
of color channels, we hypothesize that such disproportionate
row-wise disturbances can disrupt inter-channel balance and
lead to black-and-white or chromatic stripe artifacts in the
demosaicing process.

C. Electromagnetic Interference in Sensor Hardware

Electromagnetic interference (EMI) refers to the phe-
nomenon where electromagnetic waves, including RF and
other ranges of frequencies, disrupt the normal operation
of nearby electronic devices [15], [[16]. Prior studies have
demonstrated that electromagnetic signals can affect the read-
ing of a wide range of sensors such as microphones [17],
temperature sensors [18], [19], lidar [20], keyboards [21],
touch sensors [22]], etc. These sensors are vulnerable to EMI
because they rely on electrical signals to convert physical
inputs into digital data, and the electrical signals can be
changed by external electromagnetic energy when the energy
couples into the target systems through pervasive electrical
traces such as metal interconnects on the sensor hardware.

Prior research has demonstrated the potential for EMI to
change the image output of camera sensors. [|11]], [23] showed
how to inject electromagnetic signals into CCD cameras to
modify specific pixel values. However, due to the architectural
differences between CCD and CMOS sensors, these findings
cannot be directly applied to CMOS cameras. Notably, CMOS
cameras employ a rolling shutter mechanism, which limits
EMI from affecting image content on a row-by-row basis.
Moreover, while these works primarily focused on inducing
noticeable interference in images, our goal is to embed im-
perceptible watermarks and achieve reliable decoding, which
is inherently challenging. On another front, [9] demonstrated
a method for generating apparent row-wise purple stripes in
CMOS camera images by causing bit losses of the digital
camera data transmissions. However, this approach has two
major limitations that prevent it from being used for water-
marking. First, visible stripes only appear when an odd number
of rows are lost. If the number of lost rows is even, no visual
stripes are produced, significantly undermining its reliability
for watermark purposes. Second, the intensity of the induced
purple stripes, which essentially compromises the usability of
the produced images and makes them easily detectable by
malicious photography adversaries. These gaps require us to
investigate RF injection methods that can create imperceptible
and reliable watermarks.

III. RF-BASED IMAGE WATERMARKING

A. Threat & System Model

The defensive watermarking technology of RF-Eye-D in-
vestigates how to associate a photo with a specific physical
space to allow a defender such as the owner of the physical
space to assert that the photo was captured in this space at a
specific time. Instead of relying on software watermarks, we
explore how to enable the environment to physically inject
information into the images using RF signals.

Adversary. We consider an adversary that takes a photo
in a location and/or at a time that the adversary does not
want to reveal, such as in a photography-prohibited room. The
adversary may subsequently distribute the photos over media
platforms or other communication channels. The goal of the
adversary is to prevent the defender party from asserting where
and/or when the photo was taken. The adversary could attempt
to achieve this by turning off the camera’s location service
and erasing the photo’s metadata containing the software
timestamp. We also assume the adversary, as the owner of the
camera device, can disable any other software watermarking
functionalities on their camera device.

Defender. The defender’s goal is to inject imperceptible
geotagging watermarks that can associate the photo with a
specific physical environment. The location and time are two
representative characteristics of the physical environment that
the defender wants to identify through the injected watermarks.
The defender’s system consists of an RF emitter located in the
physical space that is able to inject RF energy into the sensing
circuits of the adversary’s CMOS camera device and a suite
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Fig. 3: Our experimental setup for feasibility tests.

of algorithms that can extract and identify the watermarks in
photos distributed by the adversary.

Application Scenarios. The capability provided by this
work enables an array of defensive applications, such as
protecting against the threat of unauthorized photography in
restricted areas and tracing the source of illegal images. In
scenarios involving sensitive information, such as scientific
laboratories, government agencies, or corporate meetings, pho-
tographing or recording videos could be prohibited to prevent
the leakage of confidential information. However, malicious
individuals may still secretly capture images and upload them
to social media or share them via instant messaging applica-
tions, causing incidents of information leakage [24]—[26]. If
specific physical environment information can be embedded
during the imaging process of malicious photography, social
media platforms could detect these embedded watermarks and
automatically block sensitive content before image publication.
Even if an adversary is equipped with an RF injector and at-
tempts to interfere with the watermarking process, the injected
signal primarily introduces additional stripe artifacts whose
structural patterns remain detectable, allowing the system to
identify the presence of a watermark and flag the image as
suspicious. Such embedded watermarks can further be used in
courtrooms to provide forensic evidence identifying the origin
of the leaked content. Additionally, the traceability offered
by such RF-induced watermarks enhances accountability in
environments where traditional surveillance may be limited or
privacy-constrained.

B. Feasibility Test

To verify our hypothesis that external RF signals are capable
of interfering with the CMOS camera sensing process to
inject watermark information, we conducted feasibility tests
using the experimental setup in Fig. 3] The setup consists
of a waveform generator (Siglent SDG6052X), an RF am-
plifier (Amplifier Research 25A250B), and a near-field probe
antenna. The target camera sensor is a SONY IMX 378
CMOS sensor commonly used in smartphones and IoT camera
devices. We operated the waveform generator in frequency
sweep mode with a sine wave output to measure how the
camera sensor could respond to different RF frequencies.
The antenna was positioned in close proximity to the CMOS
camera sensor to ensure strong controllable RF coupling.

(a) 93.2914 kHz

(b)116.6626 kHz  (c) 116.9692 kHz

(d) No Amplification (e) With Amplification (f) With Amplification
(Gain: 0%) (Gain: 50%)

Fig. 4: Examples of RF-induced stripe patterns under different
RF frequencies and signal strengths.

We observed during the frequency sweep test that the cap-
tured images exhibited additional row-wise stripe patterns at
certain frequencies. In addition, different RF frequencies could
change both the color and number of induced stripes, as shown
in Fig. @ This frequency-dependent variation confirms that the
stripe patterns result directly from RF signals. When increasing
or decreasing the strength of the RF output, the intensity of the
stripes becomes higher or lower accordingly. Further reducing
the RF power makes the induced stripe patterns imperceptible
to human eyes. These phenomena are fundamentally different
from the induced patterns discovered in previous work [9],
where EMI disturbing the digital data transmission of pixel
data could only induce obvious purple stripes that have a
constant, strong intensity. A key difference is the use of MHz
and GHz electromagnetic frequencies in [9] that tend to affect
digital transmission. In contrast, we utilize RF frequencies
on the order of 100 kHz to adapt to the operation of the
rolling shutter process. This further confirms that our new RF
injection method affects the analog sensing process of CMOS
camera sensors. Moreover, we observed that the variations
in the number and color of the stripes exhibited periodic
changes. Similar stripe distributions in terms of number and
color consistently appeared at regular frequency intervals. This
suggests that certain forms of sampling process during CMOS
image acquisition have caused aliasing of the injected RF
signal, which prompted us to further model the underlying
causality of the injected patterns (Section [[lI-C).

In addition to the impact of RF output, the injected patterns
are also affected by the imaged scene content. The stripes were
most prominent when the camera lens was physically covered,
as the low light intensity caused the amplifier in the CMOS
sensor’s measurement unit to adaptively increase the gain,
thereby amplifying image signals and making the stripes more
visible. When the camera imaged a normal background scene,
however, the visibility of the stripes could be significantly
reduced and become imperceptible to human eyes. To verify
whether the stripes still remain detectable in such impercepti-
ble cases, we captured two images of the same scene, one with



(b) Image with Stripes

(a) Clean (c) Difference

Fig. 5: Comparison between (a) a camera-captured image
scene, and (b) the scene captured when there is RF injection.
Although complex image scenes make RF-induced watermarks
imperceptible to human eyes, the difference (c) shows it’s
computationally detectable.

RF signal injection enabled and the other without. We then
computed the pixel-wise difference between the two images
and amplified the result to reveal subtle variations. As shown
in Fig. [5] the difference images clearly display the presence of
stripe patterns. These observations provide evidence that RF
interference can be used to embed imperceptible watermark
information into camera-captured content, which aligns with
the requirements of watermarking applications.

C. Causality Model

The feasibility tests have demonstrated how changing RF
injection frequencies could potentially control the number and
color of injected stripe patterns for watermarking. The de-
fender injecting the stripes may thus utilize this characteristic
to build a controlled information channel between the defender
and the adversary’s camera image outputs. Achieving precise
control requires a deep understanding of how RF parameters
are mapped to different stripes. This section thus seeks to
explain the relevant observations and provide a theoretical
model underpinning the defender-controlled watermark injec-
tion process.

Number of Injected Stripes. The change of stripe number
is equivalent to changing the width of the injected stripes.
Fig. [6] shows that the number of stripes exhibits a periodic
variation pattern when RF frequency changes. Within each
frequency cycle, the stripe count follows a repeating “de-
crease—increase” pattern. The minimum stripe count appears
at a center RF frequency (116.3560 kHz), where the image
displays alternating blue and orange bands covering the entire
image. Moreover, across different frequency cycles, such as
those centered at 116.3560 kHz and 209.4408 kHz, the stripe
count and variation pattern remain consistent under identical
frequency offsets from the center frequency.

This behavior stems from the fact that the ADCs in the
measurement unit sample the rows of the pixel array at a
certain sampling rate. As explained in aliasing occurs
when the sampling rate is lower than twice the injected signal
frequency, leading to periodic changes in the appearance and
distribution of stripe patterns. The process is modeled below.
Let figna and feample denote the frequency of the injected RF
signal and the ADC sample frequency of the CMOS sensor

-0.1533 kHz == Center Frequency = +(0.1533 kHz

(2) 116.2027 kHz (b) 116.3560 kHz (c) 116.3560 kHz (d) 116.5093 kHz ‘
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(€) 209.2875 kHz (f) 209.4408 kHz (g) 209.4408 kHz (h) 209.5941 kHz

Fig. 6: Stripe number variations under different RF frequen-
cies. The first row (a—d) is centered around 116.3560 kHz.
At the center frequency (b and c), the induced stripe number
reduced to less than 1. When the frequency slightly deviates
from the center (a and d), the number of visible stripes
increases symmetrically. The second row (e-h) follows the
same patterns with another center frequency at 209.4408 kHz.

respectively. The resulting aliasing frequency observed during
the row-by-row sampling phase can be expressed as:

falias = fsignal - N x fsampley (D

where N € N and —fsson < (fiyo0n — Ny - f;) < Lsmie The
stripe number is determined by the envelope of the aliased
signal, which exhibits different behaviors across various fre-
quency ranges:

f _ |falias|7 if |falias‘ S % (2)
env falias - %‘ ,if |falias‘ > %
Accordingly, the number of stripes follows:
W x
num_stripes = W X fenv 3)

f sample

where W denotes the total number of image rows. For the
SONY IMX378 CMOS image sensor, the ADC sampling
frequency is measured to be fomple = 93.0848 kHz, and the
number of rows is W = 3036 pixels. The number of stripes in
Fig. ] (b) and (c) is 10 and 20, respectively, showing how the
actual number of injected stripes matches with this theoretical
model’s output.

Color of Injected Stripes. Varying frequencies of the
injected RF signal also result in different stripe colors, as
shown in Fig. @] We observe that the possible outcomes
can be categorized into black-and-white stripes (Fig. E| (a))
and colored stripes (Fig. [] (b)). The stripe color is jointly
influenced by the fy,s and the structure of the Bayer filter
matrix. In a typical Bayer matrix, adjacent rows consist of
RG and GB channels. Since CMOS image sensors perform
row-wise readout, a very small fy;,s leads to sampled signals
in adjacent pixel rows having highly similar amplitudes and
phases. This causes the RGB channels in neighboring rows
to increase or decrease simultaneously, resulting in black-and-
white alternating stripes. However, the changes in channel val-
ues across adjacent rows become uneven when the amplitude



- i
1 Watermark :: Stripe Extraction :. Stripe2Bit :
1 . 5
Encoding/Decodin - i
i 8 g N Training Phase i :
1 & @ n |: 1
1 it 1
| 1
| y Iy Bit Region :
: Simulation Data Synthesis Stripe Enhancement Model Training :: Segmentation 1
1
i ; |
i Testing Phase Bit Value !
: Determination :
1 sl | :&] !
' i - d E <5 '
1 3 g = 2 !
i 1
1 Real-World Captured Images Stripe Enha t Model Inference 1
| 1
! 1

Fig. 7: Overview of the RF-Eye-D prototype system.

and phase differences between signals sampled by adjacent
rows become slightly larger, resulting in colored stripes. The
knowledge of stripe color enables us to perform color space
transformations for stripe pattern enhancement, as will be
shown in Section

IV. RF-EYE-D SYSTEM DESIGN

Fig.[7] provides an overview of our prototype system achiev-
ing CMOS camera image watermarking. It consists of four
modules: Watermark Encoding/Decoding, RF Injection, Stripe
Extraction, Stripe2Bit.

A. Watermark Encoding

Embedding watermark information into a CMOS camera
through RF signal injection presents several challenges. The
most critical issue lies in the lack of an effective synchro-
nization mechanism between the injected RF signal and the
image acquisition process, making it hard to determine the
starting position of the embedded watermark in the decoding
stage. Furthermore, unlike optical camera communication or
electromagnetic signal injection-based camera communication
methods [8]] [27] that assume a cooperative camera can thus
leverage multiple video frames to progressively accumulate
information, non-cooperative camera watermarking requires
the entire watermark to be embedded within a single image
frame. This imposes stricter constraints on RF watermark
design.

To resolve these challenges, our proposed encoding scheme
first converts the watermark information into a binary bit
sequence and place a specific preamble at the beginning of the
sequence to enable synchronization during decoding. Using
on—off keying, we map each bit to a signal pattern: a bit
value of “1” triggers the emission of an RF signal at a
designated frequency, whereas a bit value of “0” corresponds
to no signal transmission. Subsequently, a time-domain signal
is synthesized based on the bit sequence, with a total duration
equal to the image capture time tg (defined in Equation [5)).
The duration of each bit, denoted as ¢p, is defined by:

ls

tg = ———— 4
B num_bits “)

where num_bits represents the total number of bits, including
the preamble. This modulated signal is then transmitted in
a continuous loop. Given that the exact temporal alignment
between the RF signal and the beginning of image acquisition
cannot be guaranteed, we can, without loss of generalizability,
assume that the RF signal starts to affect the image from row n.
Thus, the portion of the image from row n to row W captures
(W5aEL) x num_bits bits approximately, starting from the
first bit in the current signal cycle; the rows from 1 to n — 1
correspond to the tail end of the previous cycle and cover the
bit indices ranging from (W) X num_bits to num_bits.

Once the preamble is successfully located in the recon-
structed bit sequence during the decoding process, the system
can achieve proper alignment and then recover the complete
watermark sequence. In cases where the detected bit sequence
does not contain an exact match to the predefined preamble
due to the presence of bit transmission and detection errors, the
system computes the Hamming distance between the known
preamble and all candidate subsequences within the detected
sequence and select the one with the minimum distance as the
best match.

B. Stripe Injection

RF-Eye-D carefully designs the RF waveforms to ensure
that a specific number of bits can be embedded into a single
image. To this end, the duration of the emitted signal should
match to the image acquisition duration. To compute the
required acquisition time for a single image, we must first
determine the total number of image rows W. During actual
image acquisition, the CMOS camera captures images at its
maximum resolution and subsequently resizes the captured im-
age according to the user-specified target resolution. Therefore,
we only need to verify the maximum resolution of the camera
model used to determine the parameter V. Then the image
acquisition time ¢ g can be calculated based on the total number
of image rows W and the sampling frequency fsampie Of the
CMOS camera:

w

B f sample

(&)

ts



(c) Blue Channel

(a) Original Image

(b) Orange Channel

Fig. 8: Example of how watermark stripe enhancement using
color space transformation and model-based knowledge of
stripe colors could amplify the watermarks.

Once tg is calculated, the duration of the signal corresponding
to each bit tp can be obtained accordingly.

The required signal frequency fggna that generates exactly
num_bits stripes over the duration tg can be computed
according to Equation [I] 2]and [3

num_bits X fsammie sample
fsignal = — W f c + N x f 4pl (6)

Finally, we generate a sinusoidal waveform with frequency
fsignat and duration tg, and divide this waveform evenly into
num_bits segments, each corresponding to one bit with a
duration of tp. If the bit value is “1”, the corresponding
waveform segment remains unchanged, resulting in a stripe
in the image. If the bit value is “0”, the waveform segment
is set to zero, so that the region where a stripe would
otherwise appear remains the same as the original image
without RF injections. Subsequently, we utilize an arbitrary
waveform generator combined with an antenna to transmit the
constructed waveform in a continuous loop.

C. Stripe Extraction

The next critical challenge is accurate extraction of the
embedded imperceptible stripes from images with complex
backgrounds. Note that in real-world scenarios, the defender
cannot simply take the difference between two images as
demonstrated in Fig. [5|because the ground-truth image without
RF injection is unknown to the defender. To address this,
we propose a stripe extraction approach involving a stripe
enhancement algorithm and a background removal model to
enable accurate retrieval of invisible stripes.

1) Stripe Enhancement: Fig.[8|(a) illustrates an image with
a complex background embedded with alternating orange and
blue stripes, which are barely perceptible to the human eye. To
enhance the visibility of the embedded stripes, we transform
the image from its original RGB color space into a specialized
color space defined explicitly by the known stripe colors, such
as orange and blue vectors, and their orthogonal vector. Fig. [§]
(b) and (c) visualize the resultant orange and blue channel
images with the enhanced stripes. For example, bright regions
in the orange channel image indicate orange stripes. We fur-
ther apply Contrast Limited Adaptive Histogram Equalization
(CLAHE) to the transformed orange and blue channel images
to enhance contrast between alternating stripes.

(b) Gaussian Noise
Background

(c) Pure Black
Background

(a) Real Image

Fig. 9: Comparison between real (a) and simulated images.
The simulated watermarks with Gaussian noise background
(b) is blended with the clean image datasets to synthesize
training input of U-Net, and the simulated stripes with pure
black background (c) serves as the training output.

2) Background Removal Model: The background removal
model proposed aims to accurately extract clean embedded
stripe patterns from complex backgrounds. While stripe en-
hancement helps make previously invisible patterns visible,
the presence of complex backgrounds still poses a significant
challenge to stripe recognition. Specifically, relying solely
on inter-row pixel intensity variations for detection becomes
infeasible, as background clutter introduces substantial noise
that can obscure the embedded stripe signals. To address
this issue, we adopt the image segmentation network U-
Net [28] to separate stripes from the complex background.
U-Net features end-to-end spatial alignment between input
and output, allowing the model to learn pixel-level mappings
between images with complex background interference and
their corresponding clean stripe representations. Additionally,
the skip connection mechanism allows shallow features such
as spatial position information to be directly passed to the
decoder stage, preserving the precise spatial localization of
stripes. This precise position retention is essential for identify-
ing regularly distributed stripe patterns and preventing the loss
of elongated stripe structures during downsampling, thereby
enhancing stripe reconstruction performance under complex
background interference.

Training the background removal model requires a paired
input-output dataset, where each input is a background image
with injected stripes, and the output is the corresponding clean
stripe pattern. Specifically, the actual input to the model is
composed by concatenating the orange and blue channels
extracted from the stripe-injected background image after
applying a stripe enhancement process, which highlights the
embedded stripe signals for improved visibility. However,
constructing such a dataset consisting using physically injected
stripes is highly challenging and impractical. Since the lo-
cations of the physically injected stripes are uncontrollable
during image acquisition, it is impossible to guarantee that
their spatial distribution under complex background conditions
matches that captured in ideal output of background-free
settings (e.g., when the CMOS camera is physically occluded).
This poses a significant challenge for applying any data-driven
background removal techniques.

To resolve this problem for training the U-Net model, we



simulate stripe images over Gaussian noise backgrounds based
on the modeled mechanism of RF injection into CMOS sensors
(Section [III-C). As shown in Fig. [9] (b), the simulated image
closely resembles the real captured image in Fig[9 (a). To
further obtain stripe-injected background images as inputs to
the model, we blend the simulated stripe images generated
on Gaussian noise backgrounds with real background images
using a fixed opacity. The specific blending formula is as
follows:

Istripe = Ibg + Opa0ity X Isim (7)

where I is the synthesized background image with in-
jected stripes, I, is the clean background image without
stripes, Ig;p, is the simulated stripe image generated on Gaus-
sian noise, and we set opacity = 0.04.

However, additional challenges arise due to the camera
random imaging noise and the image demosaicing process,
which could create extra visual artifacts in image regions
corresponding to a bit value of 0. Specifically, these re-
gions can exhibit patterns that appear slightly lighter than
the surrounding orange areas, thereby introducing misleading
visual cues that may interfere with the accurate recognition
of stripe patterns. To mitigate the interference caused by this
phenomenon, we generated an additional set of simulated
stripe images that have a pure black background, where all
initial pixel values are set to zero, in parallel with the stripe
images simulated on Gaussian noise backgrounds. During the
simulation of stripe injection on the pure black background,
we deliberately increased the strengths of the injected signal
to enhance the visibility of the stripe patterns. As shown in
Fig. [9] (c), the color of the stripes changed from the original
orange to a more vivid red. This visual shift is consistent with
the effect observed in real captured images when the injection
signal strength is increased using a RF signal amplifier, thereby
validating the simulation’s fidelity to real-world conditions.

The stripe-injected background images synthesized using
Equation /| are used as inputs to the model. At the same time,
the stripe images simulated on pure black backgrounds serve
as the output for the U-Net model. This design enables the
model to produce a pure black background when the bit value
is 0 and a clearly colored stripe when the bit value is 1, thereby
significantly reducing the complexity of subsequent stripe to
bit transformation task. It is worth noting that the training
set only includes synthesized images from the simulation so
that we can generate training images in a scalable manner.
In contrast, we directly evaluate our system on real-world
RF-injected images during testing. This will enable us to
further verify the correctness and generalizability of the stripe
injection modeling.

D. Stripe2Bit

After constructing the training dataset and training the U-
Net model, we use real-world captured images with injected
stripe watermarks as the test input. The model then generates
clean stripe images, thereby effectively eliminating the inter-
ference of complex backgrounds. Based on clean stripe images

from the U-Net, we develop the watermark decoding module
consisting of two main components: Bit Region Segmentation
and Bit Value Determination.

In bit region segmentation component, since the position of
the injected stripes within the image is not controllable during
capture, it is not feasible to simply divide the image from the
first row. Therefore, we first locate the region where red and
blue stripes are most prominent and define it as the starting
region. The image is then evenly divided along the row axis
into a number of bit regions equal to the total number of bits.

In the bit value determination component, we evaluate each
row by computing the sum of its RGB values within each
segment. If this sum exceeds a predefined threshold, the row
is categorized as red or blue based on its color composition;
otherwise, it is considered black. We then count the number
of rows within the segment that are classified as either red or
blue. If this count exceeds one-fourth of the total number of
rows in the segment, the corresponding bit is assigned a value
of 1; otherwise, it is set to 0. After identifying the bit value
in each region, we obtain a complete bit sequence. However,
the region with the most prominent red and blue stripes may
not correspond to the actual starting position. Therefore, after
feeding the inferred bit sequence into the watermark decoding
module, we perform a circular shift based on a predefined
preamble to ensure that the bit sequence begins in the correct
order, thereby enabling accurate decoding of the embedded
watermark information.

We evaluated the bit region segmentation and bit value
determination algorithms on 9,000 synthetically generated
stripe-only images. The results show that both algorithms
can reliably identify stripe regions and accurately determine
the corresponding bit values, indicating that the proposed
Stripe2Bit module is well-suited for our task.

V. EVALUATION

Our evaluation characterizes the feasibility and factors of the
RF-based watermark injection technique in proof-of-concept
lab settings. The main objective of the evaluation is to identify
the factors posing challenges for RF-Eye—-D watermarking
and reveal possible resolutions.

A. Experimental Setup

The experiments use a setup similar to Fig. [3| By default,
the system is evaluated on SONY IMX 378 CMOS camera
on a Google Pixel smartphone. Other camera sensors will be
further evaluated in Section [V-Cl

1) Datasets: For the simulated training set, we randomly
select 10,000 RGB images from the Home Office and Living
Room categories of the NYU Depth Dataset V2 [29] as
background images. The simulated images are generated in
MATLAB following the methodology in Section

For the test set, we use real images captured by the
camera sensors with injected stripes and evaluate them on
the U-Net trained solely on synthetic data. We collected
four different categories of test images that represent typical
application scenarios of using such watermarking techniques



to defend against malicious photography, including indoor
scenes, printed documents, computer screens, and white wall
backgrounds. For each test case, the camera sensor captures 20
images of different scenes for each category of scenarios. Each
image is embedded with 20 bits of information. To further
assess the robustness of the model, we additionally collect
20 images per condition under varying illumination levels,
different imperceptibility levels, and different camera devices.
In addition, we also collected images embedded with varying
numbers of bits for testing to investigate the upper bound
of the encoding capacity of the RF watermarking system. In
total, 300 watermarked images were physically collected for
evaluation for these test cases.

2) Metrics: Since image watermarking requires not only
correct transmission of watermark bits but also imperceptibil-
ity with various background scenes, we employ a diverse set
of three evaluation metrics: peak signal-to-noise ratio (PSNR)
for assessing the imperceptibility of the watermark, entropy
for assessing the complexity of image background, and bit
error rate (BER) for assessing the accuracy of the encoding
and decoding process.

Peak Signal-to-Noise Ratio (PSNR). PSNR is a commonly
used metric for measuring the similarity between images,
which allows us to evaluate how imperceptible the injected
watermarks are. The PSNR value is greater than zero, and a
higher PSNR denotes more similar images before and after
watermark injection and thus better imperceptibility. PSNR is
calculated as:

®)

MAX?
PSNR =10 - logy ( 1)

MSE
where MSE refers to Mean Squared Error:

1 m n
MSE = — 373" (Lripe(i ) = Iy (0,9))° )

i=1j=1

MAX; denotes the maximum possible pixel value of the
image; H and W represent the height and width of the
image; Igipe denotes the image with injected stripe signals;
1Ip,4 represents the background image captured from the same
viewpoint without stripe injection. It is worth noting that Iy,
is introduced solely for the purpose of evaluating watermark
imperceptibility during the experimental phase, and is not
required by RF-Eye-D in real-world applications. Examples
of images with different levels of PSNR are provided in
Appendix [A]

Entropy. Image entropy reflects the degree of disorder in
the pixel value distributions [30], [31]]. A higher entropy value
indicates greater complexity in the image scenes. The entropy
of an image is defined as:

255

Entropy = — Z pi logs p;
i=0

(10)

where p; denotes the probability of pixels with gray-scale
value 7, and the range of ¢ depends on the bit depth of the

30 50 s
. 8
2 0.30 0

50.25 =40
Z .20, 2 z°
£
£ 0.15 ~ 4
£0.10 533 S,
= ~
“g'gi ﬂ ﬂ = \ﬂ\ 0 S > 0 * S S
: N S D D ¥ &S D D S N
& & > P & & & > & & & > P
S ~;&$ o & & -&4\ o* S -@é oF
& o &
(a) BER (b) PSNR (c) Entropy

Fig. 10: Overall performance of RE-Eye-D system.

grayscale image converted from the original image. For an 8-
bit grayscale image, i € [0,255] and the maximum possible
entropy is 8. Examples of images with different ranges of
entropy are provided in Appendix [B]

Bit Error Rate. BER is an important metric for evaluating
the reliability of watermark information transmission. BER
ranges from O to 1, where a lower BER value indicates higher
decoding accuracy of the watermark. It is defined as the ratio
between the number of erroneous bits and the total number of
bits in the sequence:

error_bits

BER = (1D

num_bits
B. Overall Watermarking Performance

Fig. shows the BER, PSNR, and Entropy across the
four test scenarios. We observe that the BER of the RF
watermarking system remains below 0.1 in the document,
indoor, and white wall scenarios, while it exceeds 0.1 in
the screen scenario. Interestingly, although the PSNR in the
computer screen scenario is lower than that in the indoor
scenario, which suggests that the stripe patterns are more visu-
ally apparent, the decoding performance was actually worse.
This phenomenon may be attributed to two factors: First, the
average visual complexity of images in the screen scenario
is relatively higher. Second, when capturing screen content
using a camera, moiré patterns may appear in the images
[32], which can interfere with the stripe extraction algorithm
and lead to a higher BER value. We further investigate the
impact of moiré patterns on the system in the Appendix [C] In
the white wall scenario, although the PSNR is comparable to
other scenarios, the significantly lower background complexity
leads to higher decoding accuracy. In contrast, the BER is
lower in the indoor scenario despite its higher background
complexity and PSNR compared to the dataset average. This
suggests that even under conditions of more imperceptible
stripes and greater background complexity, RF-Eye-D has
better decoding performance in the indoor scenario. One
possible explanation is that the stripe extraction model was
primarily trained on synthetic data generated from indoor
scenes, which may enhance its extraction ability in such
environments, thereby reducing the BER value.

The results above demonstrate the potential of using RF
injection to watermark images, but also reveal several factors
that may affect its performance.
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Fig. 11: Impact of different watermark imperceptibility and
background complexity.

C. Factors

We further characterize the robustness of RE-Eye-D to the
variations of key factors to quantify the impact of possible
interference of the physical environment, device hardware, etc.

1) Imperceptibility Level: We first evaluate how
RF-Eye-D performs under varying levels of watermark
imperceptibility by collecting a total of 60 images with
varying output strengths of the RF signals. All images were
captured against the same background to control variables
and eliminate the impact of background complexity.

Fig. [T1] (a) illustrates the distribution of PSNR and the cor-
responding BER values across the collected 60 watermarked
images. It is observed that under the consistent background
scene, the average BER tends to increase as PSNR increases,
verifying that better imperceptibility leads to lower watermark
decoding accuracy. A small rise-and-fall glitch appears around
a PSNR of 40 and is most likely caused by a single sample
point, and can thus be considered an outlier rather than a
general trend. Notably, even when the PSNR reaches 41 dB,
a level at which the stripe becomes highly imperceptible (as
Fig. [I4] in Appendix [A] shows that stripes are already barely
visible at 35 dB), the average BER remains below 0.1, and
most image samples also maintain a BER at or below 0.1. This
relatively robust performance is attributed to the effectiveness
of the stripe enhancement algorithm, which amplifies the
colored signals of subtle stripes in the transformed color
space, thus ensuring accurate extraction of the embedded bit
information even under highly imperceptible conditions.

2) Image Background Complexity: As observed in our
main experiments, the BER of watermark extraction is not
only related to imperceptibility but is also affected by the
complexity of the image background. To quantify background
complexity, we calculate the entropy of each image collected
in the main experiments (Section and group them into
discrete intervals with a step size of 1 to analyze the cor-
responding BER distribution. Fig. (b) shows that BER
generally increases with increasing background complexity,
though slight fluctuations are observed. The results indicate
that our watermarking system maintains an average BER
below 0.1 for images with simple or moderately complex
backgrounds. However, performance declines on images with
extremely high background complexity, particularly those with
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entropy values in the range of 7 to 8. This suggests that the
performance of our RF watermarking system still needs further
improvement when dealing with images that feature highly
complex textures and rich colors, such as natural landscapes
in outdoor scenes. Section [VI| will further discuss the possible
ways of future improvements.

3) Ambient Lighting: To evaluate the robustness of the
RF-Eye-D system under varying lighting conditions, we
captured images of the same background scene while adjusting
the illumination intensity. Since modern cameras typically
apply auto-exposure to compensate for lighting changes, we
conducted experiments under two separate configurations:
with auto-exposure disabled and with it enabled. When auto-
exposure was turned off, the image brightness directly re-
flected the actual ambient illumination. When enabled, the
internal image processing algorithm of camera will adjust the
overall brightness to compensate for lighting variations. For
each exposure setting, we collected 80 images under four
illumination levels: 180 lux, 840 lux, 1500 lux, and 2200 lux.

As shown in Fig. (a), when auto-exposure was disabled,
PSNR increases as lighting intensity becomes stronger. This is
because the embedded stripes become more visually prominent
in darker environments, reducing their imperceptibility and
thus causing lower PSNR. Meanwhile, we observe that BER
increases as PSNR increases, indicating that more impercep-
tible stripes result in lower watermark decoding accuracy.
Overall, the RF watermarking system maintains an average
BER lower than 0.1 under lighting conditions up to 1500 lux.
Although system performance may degrade under extremely
bright lighting conditions (2200 lux), images captured in such
environments are often over-exposed, which obscures visual



TABLE I: Parameters of Tested Camera Devices

Phone Model CMOS Sensor Resolution Typical RF Freq.
Google Pixel IMX 378 4048 x 3036 116.9692 kHz
Google Pixel 3 IMX 363 4032 x 3024 117.9676 kHz
OnePlus DE2117 Unknown 4160 x 3120 143.4675 kHz

content and consequently reduces the feasibility of malicious
photography attacks.

With auto-exposure enabled, the system exhibited slightly
lower performance in low-light conditions, as brightness com-
pensation made the embedded stripes more imperceptible,
leading to higher PSNR and reduced decoding accuracy. In
high-light conditions, auto-exposure reduced image brightness,
making the stripes less imperceptible, which resulted in lower
PSNR and improved decoding accuracy. Overall, the system
exhibited more stable performance under different lighting
conditions when auto-exposure was enabled.

4) Angle: To investigate the impact of camera angle on the
performance of our RF watermarking system, we adjusted the
angle between the camera and the magnetic probe from 0° to
90° in 15° increments and observed the corresponding changes
in model performance. Fig. [I3] presents the results for the 0°—
60° range, illustrating a gradual increase in BER as the angle
increases. Further analysis of the experimental data reveals
that at an angle of 75°, the watermark could not be detected
in nearly half of the samples, and at 90°, it could not be
recognized in any of the samples. This is because, increasing
the angle reduces the RF signal component perpendicular to
the CMOS sensor surface, which lowers the effective injected
energy and consequently degrades watermark embedding and
extraction performance.

These findings suggest that under conditions where a near
field magnetic probe is used without a high-power amplifier,
the RF-Eye-D system achieves a maximum effective angular
coverage of approximately -60° to +60°, totaling about 120°.
To further expand the coverage area of our RF watermarking
system, future work can incorporate a high-power amplifier to
enhance signal strength, or adopt multi-directional antennas to
enable stable signal injection across wider angular ranges.

5) Camera Device: While the experiments above only use
a Google Pixel smartphone equipped with a SONY IMX378
camera sensor, RE—Eye-D is applicable to various types
of CMOS camera sensors. Experiments on two additional
smartphones demonstrate this, including a Google Pixel 3 and
a OnePlus Nord N200 phone. Table [[ shows the information
on the three tested devices, where “Resolution” denotes the
maximum image resolution of the camera, and “Typical RF
Freq.” refers to the RF frequencies used to inject 20-bit
watermarks.

As shown in Fig. (b), the performance of RE—-Eye-D
is not strictly correlated with PSNR values across different
devices. While the system achieves lower BER on devices
equipped with SONY IMX sensors compared to the OnePlus
DE2117, its average BER on all three devices remains below
0.1. It is worth noting that SONY IMX-series CMOS sensors
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are widely used in smartphones and IoT devices [33]. This
observed robustness and generalizability of RF-based water-
marks can be attributed to the fact that our stripe extraction
model is trained entirely on simulated data and does not rely
on hardware-specific characteristics, thereby enabling effective
generalization across various camera platforms.

Since different camera device models operate at distinct
sampling frequencies, it is necessary to select appropriate RF
injection frequencies accordingly. To facilitate this, defenders
can identify the device model by analyzing the device’s
appearance captured in surveillance footage. Alternatively,
since different devices emit distinctive electromagnetic signal
patterns during operation, defenders may infer the model by
detecting these electromagnetic emissions [34]. Furthermore,
defenders can also transmit a set of RF frequencies known
to be compatible with a variety of commonly used camera
sensors, thereby expanding the system’s applicability to a
wider range of devices.

6) Number of Injected Bits: As a feasibility characteriza-
tion, this paper primarily evaluated the case of embedding 20
bits per image. However, increasing the number of embedded
bits per image not only increases the potential bandwidth but
also allows for the use of longer error correction codes to
mitigate bit errors. To better understand the potential impact,
we further explore the feasibility of embedding more bits per
image.

Table [[I] presents the RF frequency parameters and the
corresponding BER performance for embedding 20, 50, and
100 bits. Note that more frequencies may be used according to
Section [[II-C| while we only aimed to demonstrate a feasible
setup here. We found that when the number of embedded bits
does not exceed 50, the system could maintain a BER below
0.1. However, the average BER increases to 0.15 when the
number increases to 100, indicating that approximately 15 bits
per image may be erroneous. This performance degradation is
caused by the increased watermark density, which results in
narrower stripes that are more difficult to extract accurately.

D. Geotagging and Timestamping

With the understanding of the potential channel capacities
informed by the experiments above, it is possible to further
analyze the possible types of information that could be in-
jected as watermarks. A comprehensive approach geotagging
and timestamping approach involves converting the latitude,
longitude, and timestamp at the moment of capture into
bits. Achieving a meter-level localization accuracy requires
latitude/longitude precision of 0.00001 degrees, corresponding
to at least 51 effective bits. Additionally, representing a times-
tamp with second-level resolution over the range from 1970
to 2038 (the Year 2038 problem [35]]) requires 32 more bits.
These requirements do not include the overhead for preambles
or error correction, thus placing stringent demands on the bit
embedding capacity per image.

However, only certain locations are truly sensitive in ac-
tual use cases. Embedding full geographic coordinates and
timestamps in every image may result in considerable bit



TABLE II: Injecting Different Number of Bits

Number of Bits RF Frequency = BER
20 116.9692 kHz ~ 0.075
50 117.8890 kHz  0.051
100 119.4220 kHz 0.15

redundancy. We envision a more agile, need-based encoding
scheme: assigning a unique identifier to each sensitive region
and embedding the identifier instead of the full coordinate
data. Similarly, temporal information can be simplified by
defining a common starting date and assigning a unique
number to each day thereafter.

Need-based Unique ID Watermarking. When the number
of stripes is set to 20, the average BER in our experiments
ranges from 0.05 to 0.1, indicating that approximately 2 bits
may be erroneous per image. To ensure reliable decoding, we
employ BCH codes for error correction. Under a configuration
of 20 total bits and the ability to correct up to 2 errors,
Bose—Chaudhuri-Hocquenghem (BCH) [36] coding requires
10 redundant bits, leaving 10 bits for effective information
encoding. When the number of stripes is increased to 50,
the observed BER is 0.051, corresponding to roughly 3 er-
roneous bits per image. Correcting up to 3 bit errors requires
18 redundant bits, leaving 32 bits for effective information
encoding. This setup can theoretically support up to 23 unique
identifiers. Even if 12 of these bits are reserved to encode
time information covering a span of about 10 years, 22°
distinct sensitive locations can still be encoded. We believe
this capacity is sufficient to support watermarking applications
in sensitive areas.

VI. DISCUSSION

This section discusses the observed limitations and possible
venues for future works that aim to deploy the proposed RF
watermarking techniques.

Alternative Defensive Strategy. While our current system
focuses on imperceptible watermark embedding, an alternative
direction worth exploring is proactive visual disruption, where
the RF power is deliberately increased to induce strong visible
distortion in captured images, thereby making unauthorized
photos unusable and helping prevent malicious photography
in sensitive environments.

RF Injection Distance. As a proof-of-concept to validate
the feasibility of RF-injected watermarks, experiments in this
work only tested near-field probes, with a maximum injection
distance on the order of 10cm. Increasing the RF injection
distances can be implemented by employing dedicated far-
field RF antennas and higher-power amplifiers, which have
been demonstrated extensively in prior research [17], [21],
[37]1-[40] We also provide a theoretical analysis of long-range
injection in Appendix [E] Base on the analysis, an RF amplifier
capable of outputting 55 W and an antenna with a 10 dBi
gain are sufficient to perform such RF-based watermarking
injection at a distance of 1 m.
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TABLE III: BER under Watermark Removal Methods

‘WhiteWall
0.0250
0.0450
0.0225
0.0300
0.3975
0.0325
0.0250
0.0375
0.0475
0.0250

Overall
0.0744
0.0831
0.0737
0.0719
0.3747
0.0831
0.0744
0.0787
0.0812
0.0800

Screen
0.1350
0.1550
0.1425
0.1225
0.3937
0.1725
0.1350
0.1500
0.1425
0.1600

Indoor
0.0600
0.0550
0.0575
0.0600
0.3500
0.0500
0.0600
0.0600
0.0600
0.0600

Document
0.0775
0.0775
0.0725
0.0750
0.3575
0.0775
0.0775
0.0675
0.0750
0.0750

Type

Baseline

Algorithm

No Removal

Downsampling then Interpolating
Format Conversion

Compression

Image Cut

Downscaling

General
Duplication
Gaussian Filtering
Upscaling

Targeted Color Filtering

Watermark Removal Resistance. To systematically eval-
uvate the vulnerability of our system to such attacks, we
investigated the impact of general watermark removal algo-
rithms, targeted watermark removal algorithms, and perceptual
watermark removal algorithms.

General Watermark Removal: We adopted eight widely used
methods from [41]: image duplication, lossless compression,
image upscaling, image downscaling, format conversion (JPG
to PNG), image cropping, downsampling with interpolation,
and image filtering. We applied these methods to our RF
watermarking system, and the results are presented in Table
According to Table all methods except image cropping
have minimal impact on our RF watermarking system. Image
cropping leads to significant performance degradation, primar-
ily because the watermark in our design is distributed across
the entire image. When the image is cropped, portions of the
embedded watermark may be physically removed, resulting in
decoding failure. However, it is important to note that cropping
also destroys meaningful content in the image itself, reducing
its overall integrity and usability. Future work can further
optimize the watermark design, such as by reducing its spatial
footprint or embedding it in central regions that are less likely
to be cropped, thereby enhancing robustness and retention.

Targeted Watermark Removal: Since the RF-injected stripes
are nearly imperceptible when imaging normal backgrounds
but become visible when the camera is covered and the
captured frame is entirely dark, we assume that the adversary
can obtain a stripe-only image by masking the camera and
extract the RGB values of the stripe regions. The attacker
then attempts to remove the watermark by filtering out pixels
whose RGB values fall within a #30 range of the extracted
values in each channel from an image captured under normal
background conditions. The resulting decoding performance
is reported in the last row of Table and shows only a
slight increase in BER, indicating minimal degradation. This
limited impact can be attributed to the fact that, although the
adversary may capture the RGB characteristics of the stripes
under dark backgrounds, their color distribution changes when
overlaid with real-world image content, thereby undermining
the effectiveness of color-based filtering strategies.

Perceptual Watermark Removal: Although the system is
designed to make the watermark highly imperceptible to the
human eye, it may still become visually detectable under
certain extreme conditions, such as when the attacker is very
close to the RF transmitter and the transmission power is high.
Under such circumstances, the watermark could potentially



be identified and removed using image editing tools such as
Photoshop. To address this potential threat, future work can
incorporate a human motion tracking mechanism to improve
the adaptability and security of the system. For example, the
system can utilize surveillance video to monitor the position of
the attacker in real time and dynamically adjust the RF signal
transmission power based on the distance between the attacker
and the transmitter. This mechanism helps ensure successful
watermark injection while further reducing its perceptibility,
thereby effectively preventing visual detection and removal of
the watermark.

RF Device Deployment. To effectively prevent the dissem-
ination of privacy-sensitive images, the RF-Eye-D system cur-
rently employs a design based on continuous RF signal emis-
sion. While this approach has demonstrated effective defensive
capabilities, it raises concerns regarding power consumption
and potential electromagnetic interference with surrounding
electronic equipment. To mitigate such drawbacks, future
work can incorporate human presence detection to enable
RF transmission only upon detecting human activity, thereby
preserving system effectiveness while minimizing power and
environmental impact.

In more complex electromagnetically dense environments,
external RF interference could potentially pose challenges to
system robustness. However, we note that the operational
frequency range of RF-Eye-D is approximately below 40
MHz, whereas prevalent RF sources such as Wi-Fi and 5G
signals operate in the GHz band, and FM radio typically
exceeds 80 MHz [14]. Therefore, these signals are unlikely to
interfere with our watermarking system. Even if interference
does occur within the operating band of RF-Eye-D, it would
still manifest as stripe artifacts in the captured images, which
can be treated as suspicious and flagged for further inspection.

RF Shielding. To evaluate the possibility of bypassing
the watermark through RF shielding, we selected three RF
shielding bags designed for smartphones, labeled as Case 1,
Case 2, and Case 3. The experimental setups for these three
cases are illustrated in the Fig. in Appendix [D] Case 1
and Case 2 are opaque shielding bags from different brands.
To capture images using these two bags, the camera must
be exposed to ensure proper imaging. In contrast, Case 3
was intentionally chosen for its transparent material, allowing
image capture even when the camera is fully enclosed.

As illustrated in Fig. [I3] (b), Case 1 and Case 2 exhibited
similar performance to the baseline scenario without shielding.
This is because the camera must remain partially exposed
for image acquisition, allowing RF watermark signals to be
injected as usual. In contrast, Case 3 caused a moderate
degradation in system performance, but the BER still remained
around 0.1. This suggests that although Case 3 introduces
some level of interference, it cannot completely block our
RF watermarking system. Moreover, prior work [17] has
demonstrated that the signal attenuation induced by RF shield-
ing can be compensated by increasing the injection power.
Therefore, future work can boost the transmission strength
to ensure reliable watermark embedding and decoding when
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facing shielding-based countermeasures.

VII. RELATED WORK

This section provides further background information on the
two categories of most related previous works.

Camera-based Communications. Prior studies have shown
that external physical signals can interfere with the image
formation process by exploiting the rolling shutter mecha-
nism of CMOS cameras, enabling high-bandwidth camera-
based communication. These methods typically rely on either
optical signals [27]], [42], [43] or magnetic signals [8]. In
optical communication, modulated LED lights are used to
embed information into images. While [42]], [43[] require
clean backgrounds for reliable decoding, [27] supports more
complex scenes but depends on producing visibly prominent
stripes during capture, which compromises imperceptibility
and limits its suitability for watermarking applications. With
magnetic signals, Magcode [8|] used modified NFC devices to
cause black-and-white stripes embedded in the imaging stage.
However, Magcode requires the camera to be blocked during
operation, as its stripe extraction relies on simple binarization.
This leads to significant performance degradation or failure in
the presence of background content. Our work builds upon
these two lines of work and provides dedicated modeling and
system design to demonstrate methodologies for RF-based
imperceptible watermarking with complex image scenes.

Physical method-based Camera Watermarking. Prior
studies have explored embedding watermarks into camera-
captured images via physical-layer signal injection. mID [32]]
proposed a Moiré-pattern-based method that subtly modifies
screen content to prevent photography of sensitive information.
However, it is limited to screen-capturing applications and can-
not generalize to diverse scenarios. Xinyu et al. [44] introduced
an LED-based method to inject visible stripes into CMOS
cameras for obstructing unauthorized photography. While ef-
fective for disruption, this approach destructively alters image
content and is thus unsuitable for covert watermarking.

VIII. CONCLUSION

This paper presents the RE-Eye-D system, which for the
first time demonstrates the feasibility of embedding imper-
ceptible watermarks into images captured by non-cooperative
CMOS cameras using RF signals. We uncover the underly-
ing mechanism and patterns of RF-induced stripe injection
in CMOS sensors, and develop a method to extract these
stripes from complex image backgrounds and decode them
into watermark information. Furthermore, we evaluate the
impact of critical factors on watermarking performance in lab
environments and outline key directions for future research.
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APPENDIX
A. Examples of PSNR levels

Fig. [T4] presents examples of images watermarked by the
RF-induced stripe patterns under typical PSNR levels. As
shown by Fig. [[4] (c), we found that it becomes challenging
for humans to perceive the injected stripes when the PSNR
is 35 dB or higher. Watermarked images with lower PSNR
levels may cause some notice but could still be accepted by
adversaries.

(2) 24 dB (b) 29 dB (c) 35 dB

Fig. 14: Examples of watermarked images where watermark
imperceptibility is measured by different levels of PSNR.

B. Examples of Entropy Ranges

(b) 5~6

(a) 4~5 (©) 6~7 (©)7~8

Fig. 15: Different ranges of entropy.

Fig. [T5] presents examples of images that have different
ranges of entropy. As the entropy increases, the background
complexity of the images significantly increases. Entropy
values in the range of 4 to 5 typically correspond to relatively
simple backgrounds; values between 5 and 7 are associated
with common daily scenes; and values between 7 and 8
indicate particularly complex backgrounds.

C. The impact of moiré patterns on the RF watermarking
system

First, to verify whether moiré patterns could cause false
positives in the RF watermarking system, we first collected
20 image samples containing only moiré patterns, without any
RF signals. Among them, 4 samples were falsely identified
as containing RF watermarks, indicating that moiré patterns
can indeed cause false positives. Future work can incorpo-
rate structural priors to distinguish between irregular moiré
textures and the row-wise stripe patterns characteristic of RF
watermarks, thereby avoiding misidentification.

To further evaluate the impact of moiré on watermark
extraction accuracy, we conducted experiments under three
conditions: without moiré interference, with moiré interfer-
ence, and with moiré interference while increasing the RF
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Fig. 17: BER under Moire Pattern Interference

output power. As shown in Fig. the presence of moiré
patterns indeed reduces the accuracy of watermark decoding
when the RF output power remains the same. However, when
we moderately increase the RF signal power, the watermark
stripes in the image no longer appear overly weak compared to
the moiré patterns, which effectively mitigates the interference
and improves watermark decoding accuracy.

D. RF Shielding Cases

Fig.|l7|illustrates the three different RF shielding cases we
used during the RF shielding experiments.

E. Theoretical Modeling of Long-range Injection

To simulate long-range injection, we first estimate the
minimum magnetic field strength required to induce stripe
interference in the image sensor by conducting near-field ex-
periments. We use an SDG6052X signal generator to produce
the signal, which is transmitted through a magnetic probe with
a radius of 2.5 cm, positioned 1 cm from the image sensor.
Stripe interference is observed when the output amplitude
reaches 3 V.

Based on this experimental observation, we further apply the
Biot—Savart law and adopt the expression for the magnetic flux
density generated by a circular current loop along its axis to
estimate the minimum magnetic field strength corresponding
to the interference threshold:

polr?
2(r2 4 22)3/2
Here, po = 47 x 1077 H/m is the vacuum permeability, r =

0.025 m is the radius of the magnetic probe, z = 0.01 m is the
axial distance between the probe and the image sensor, and

B(z) = (12)


https://doi.org/10.1145/3117811.3117820

represents the equivalent peak current. The input impedance

R of magnetic probe is 502, and the peak-to-peak voltage

Vpp of the signal generator output is 3 V, we calculate I as:
Ve 3

= =—=0.03A 1
2R 2 x50 0.03 (13)

By substituting all values into Equation we calculate
that the minimum magnetic field strength B,,;, required to
induce stripe interference in the image sensor is approximately
604nT.

To simulate far-field injection, we employ the Friis trans-
mission formula to estimate the required transmit power for
electromagnetic interference at various distances. Rearranging
the Friis formula to solve for transmit power yields:

S - 4rd?

P== (14)
where P, is the transmitted power in watts, S is the power
density at the receiver location in W/ m?, d is the distance
between transmitter and receiver in meters, and G; is the
transmit antenna gain.

Since our near-field experiments determine the threshold
in terms of magnetic field strength B,,;,, we convert this
to power density for far-field analysis. For a electromagnetic
wave, the power density can be computed from the magnetic

field strength as: )
(Bmzn . C)
S=—7 15
27 (15)
where Bpin ~ 604nT, ¢ = 3 x 108 m/s is the speed of light,
and Zy = 377§} is the impedance of free space. We then
obtain that S is approximately 43.5 W /m?. By substituting S
into Equation we can calculate the required transmit power
for different scenarios.
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